The Algae to Fuels Value Chain
Presentation for National Research Council
13 June 2011

Dr. Jim Rekoske
VP/GM Renewable Energy & Chemicals
UOP LLC
UOP Interest in Alternative Fuels

• Since 2005, a Honeywell Company – part of Specialty Materials business unit
• Leading supplier and licensor of processing technology, catalysts, adsorbents, process plants, and technical services to the petroleum refining, petrochemical, and gas processing industries.
• UOP Licensed Technology produces: 60% of the world’s gasoline; 85% of the world’s biodegradable detergents; 60% of the world’s para-xylene.
• UOP: 3400 employees worldwide.
• Honeywell: >130,000 employees, $33.6B (2010)
• Strong relationships with leading refining and petrochemical customers worldwide.

Biofuels: Next in a Series of Industry Solutions
Algal Products – Why We Care

• Proteins, meal, valuable health supplements

• Triglycerides
 – Conversion to valuable chemicals and fuels
 – Productivity promise unsurpassed by any other organisms

Honeywell’s UOP – Focused on Products from Algal Oils
UOP’s View of the Algae to Fuels Value Chain

RAW INPUTS
- Sunlight, CO2, Sugar, Land, Water, Chemicals (P, N)

STRAIN SELECTION
- Microalgae, Cyanobacteria, Macroalgae, other bacteria

CULTIVATION
- Open pond, photobioreactor, fermentation, hybrid

HARVESTING
- Flocculation, filtration, centrifugation, biological assist

DRYING
- Solar, fueled drying, vacuum drying

EXTRACTION
- Physical, chemical, osmotic (lipids, proteins, carbos)

CONVERSION
- Biodiesel, renewable diesel / jet, gasoline, power

DISTRIBUTION
- Established
Downstream: Conversion and Distribution

- Conversion and distribution are both well-known areas
- Conversion can be to biodiesel or Renewable Diesel
 - **Biodiesel**
 - Lower capital cost, higher operating cost
 - Blending limits to achieve correct diesel properties
 - No “product lift” of light fuel oil possible
 - **Renewable Diesel**
 - Slightly higher capital cost, lower operating cost
 - No blending limits – chemical indistinguishable
 - Substantial ability to uplift light fuel oil to diesel pool

Renewable Diesel and Renewable Jet Fuel provide significant benefits
Extracting Valuable Chemicals from Algae

<table>
<thead>
<tr>
<th>RAW INPUTS</th>
<th>Several different methods exist today</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Mechanical Rupture (milling, osmotic shock, etc.)</td>
</tr>
<tr>
<td></td>
<td>- Solvent Extraction</td>
</tr>
<tr>
<td></td>
<td>- Accelerated Solvent Extraction (high P, T)</td>
</tr>
<tr>
<td></td>
<td>- Co-Solvent Extraction</td>
</tr>
<tr>
<td></td>
<td>- Selective Extraction</td>
</tr>
<tr>
<td></td>
<td>- Supercritical Fluid Extraction</td>
</tr>
<tr>
<td></td>
<td>- Others</td>
</tr>
<tr>
<td>STRAIN SELECTION</td>
<td>Elimination of contaminants (P, N, Cl) is significant area of challenge as well</td>
</tr>
<tr>
<td>CULTIVATION</td>
<td>In general, least understood and most important for the economics.</td>
</tr>
<tr>
<td></td>
<td>- High energy use</td>
</tr>
<tr>
<td>HARVESTING</td>
<td>- Expensive solvent recycle or high solvent losses</td>
</tr>
<tr>
<td>DRYING</td>
<td>- Increases in yields of lipids drop directly to bottom line cost</td>
</tr>
<tr>
<td>EXTRACTION</td>
<td>DISTRIBUTION</td>
</tr>
</tbody>
</table>

UOP believes this is most promising area for improvements, novelty
Drying Algae

- **Known technology used for algae drying**
 - Solar drying
 - Ambient air (where humidity allows)
 - Heated drum / oven dryers in use today

- **Significant challenges with drying algal biomass**
 - Lipid energy content ~17 BTU per gram
 - Heat of Vaporization of Water: ~2.1 BTU per gram

- **Have to get lipids out without evaporating off all water**

 ![Flowchart](chart.png)

 - Cultivation: <0.1% solid
 - Harvesting/Dewatering: ~20% solid
 - Drying: ~90% solid

- **Energy consumption in drying is limited by thermodynamics**
- **The problem can best be addressed up / downstream**

Strong driver for improved harvesting, dewatering or water-tolerant extraction
Algal Value Chain Summary

• Many challenges and opportunities do exist
 – Lipid Extraction
 – Purification of Extracted Lipids
 – Value Engineering / Capital Reduction in Cultivation Methods
 – Strain Selection
 – Availability of Nutrients (P, N)

• Literally hundreds (thousands globally) of small algae companies operating

• Sustainable advantage to be had in technology, operation scale, operational excellence
 – Opinion: No company has yet developed technology with sustainable advantage

Widely fragmented field with lots of opportunity, risk
Backup Material
Algae-based Fuels: Complex Value Chain
Inputs: Challenges and Opportunities

- Harvesting solar energy: through algae or other?

RAW INPUTS

- STRAIN SELECTION
- CULTIVATION
- HARVESTING
- DRYING
- EXTRACTION
- CONVERSION
- DISTRIBUTION

Ambient Conditions

- Sunlight + CO₂

CO₂ Injected

Heterotrophic

- Agriculture and industrial biomass: glycerol, starches, sugars (cane + beets)
- Cellulosics: switch grasses, wood waste

- Algae converts agriculture and industrial biomass into renewable oils

LED Supplied Light
Heterotrophic Algae Growth Challenges

<table>
<thead>
<tr>
<th>Section</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAW INPUTS</td>
<td>1 barrel of oil weighs ~138 kg of which ~85% is carbon; 1 mole carbon = 12 grams; 42 gallons in 1 barrel</td>
</tr>
<tr>
<td></td>
<td>- Total carbon: 0.85*138= 117 Kg carbon</td>
</tr>
<tr>
<td></td>
<td>- Total moles carbon: 117 kg * 1 mole/12 g *1000g/kg = 9750 moles carbon in 1 barrel of oil or 9750/42= 232 moles in 1 gallon of oil</td>
</tr>
<tr>
<td></td>
<td>- Sucrose = C12H22O11 and weighs 342 g/mole</td>
</tr>
<tr>
<td></td>
<td>- Total moles sucrose needed per gallon of oil (based on carbon alone): 232/12= 19.3 moles sucrose</td>
</tr>
<tr>
<td></td>
<td>- 19.3 moles sucrose* 342 g/mole*1 kg/1000 g= 6.6 kg sucrose</td>
</tr>
<tr>
<td></td>
<td>- Sugar commodity price = ~ 15 cents per pound</td>
</tr>
<tr>
<td></td>
<td>- 6.6 kg $0.15/pound2.2 pounds/kg = $2.18 per gallon</td>
</tr>
<tr>
<td></td>
<td>- About 20% of sugar goes into growth, not lipid so cost for sugar alone is $2.73 per gallon</td>
</tr>
</tbody>
</table>

Heterotrophic Algae Good Solution with Cheap Sugar – Food Disruption
Strain Selection / Development is Crowded

- Strain selection consists of three basic types
 - Wild-type selection
 - Synthetic Biology for Evolutionary Selection
 - Synthetic Biology for Genetic Modification (GMO)

- At least hundreds, perhaps thousands of companies involved in strain selection activities

- GMO will almost certainly be restricted to closed photobioreactors for the near future.

- Cyanobacteria appear most favored for GMO – ability to use existing gene / enzyme manipulation technology
 - Used in PBR’s and fermentation systems

Engineering cyanobacteria appears most attractive
Cultivation Methods

- Four basic types: open ponds, photobioreactors, hybrid systems, and fermentation (heterotrophic).

Open Ponds
- Simple construction
- Surprisingly expensive
 - Liners, ground preparation
- Invasive species growth
- Environmental control

PBR
- Perceived to be more expensive
- Higher fluid movement cost
- Reliability and maintenance?
 - Cleaning
 - Recovery from shock
Cultivation Methods

- **RAW INPUTS**

- **STRAIN SELECTION**

- **CULTIVATION**

- **HARVESTING**

- **DRYING**

- **EXTRACTION**

- **CONVERSION**

- **DISTRIBUTION**

- **Fermentation**

RAW INPUTS

- Four basic types: open ponds, photobioreactors, hybrid systems, and fermentation (heterotrophic).

STRAIN SELECTION

- Choice depends significantly on strain selection

CULTIVATION

- Uses well-known, standard equipment from ethanol, other industry
- Somewhat capital intensive, but infrastructure exists
 - Capital on par with open ponds
- Offers ability to control conditions
- Requires energy from carbon source – indirect energy conversion

DISTRIBUTION
Methods for Harvesting Algae

RAW INPUTS

STRAIN SELECTION

CULTIVATION

Harvesting the aquaculture species and press the oil

Has gained prominence in recent years as “sustainable” solution providing food + fuel

Concern raised among environmentalists, animal rights lobby

HARVESTING

Bio-assisted Harvesting

- Utilize shrimp or fish to eat the algae
- Harvest the aquaculture species and press the oil
- Has gained prominence in recent years as “sustainable” solution providing food + fuel
- Concern raised among environmentalists, animal rights lobby

Basic Calculations / Estimates

- **Fish Mass Balance**: 1 kg fish yields 40 g of oil, 450 g of food
- 40 g of fish oil yields about 55 cc of fuels (theoretical)
- 0.72 kg of fish oil per liter of fuel
- **US Distillate Consumption**: ~280 billion liters per year
- **Need**: 200 MM MT of fish oil, > 2 B MT of fish for food
- **World Consumption**: 88 MM MT of fish

Contrast

- 88 MM MT of fish = 7.8 MM MT of fish oil = 68.3 MM bbls

Bioharvesting, while intriguing, may only be partial solution
Methods for Harvesting Algae

RAW INPUTS

- **Flocculation**
 - Chemical additives – must control amount, type for cost
 - Downstream purity issues – water release, processing
 - Can be used with any physical separation technique – sedimentation, filtration, dissolved-air flotation, centrifugation, etc.

STRAIN SELECTION

- **Filtration**
 - Single-cell organisms, < 10 microns
 - Recovery efficiency low, process operation problems

CULTIVATION

- **Sedimentation**
 - Simplest, usually requires largest flocculent levels
 - Cleaning out of sedimentation tanks, culture age issues

HARVESTING

- **Dissolved-Air Flotation**
 - Used in sewage, waste water treatment
 - Must manage size of flocculated algae carefully

DRYING

- **Centrifugation**
 - High capital cost, rotating equipment, maintenance issues

EXTRACTION

CONVERSION

DISTRIBUTION
UOP Renewable Fuels Technologies

Feed
- Natural Oil/Fats
- Hydrogen

Process
- Ecofining™ Process
- Renewable Jet Process
- RTP™ (Pyrolysis)

Product
- Honeywell Green Diesel™
- Green Jet (if req)
- Honeywell Green Jet Fuel™
- Green Diesel
- Green Power / Fuel Oil (now)
- Green Fuels (2011)

Envergent Technologies – UOP/Ensyn JV

Sustainable Technologies – Feedstock Flexible And 2nd Gen Ready
UOP/ENI Ecofining™ Green Diesel

Ecofining Process Chemistry and Flow Scheme

- Technology that produces a fully fungible hydrocarbon product
- Uses existing refining infrastructure, can be transported via pipeline, and can be used in existing automotive fleet
- Two units licensed in Europe with first commercial start-up in 2010
- Excellent blending component, allowing refiners to expand diesel pool by mixing in “bottoms”
- Can be used as an approach to increase refinery diesel output

Process Comparison vs. Biodiesel

| Natural Oil/Grease + Methanol | Biodiesel (FAME) + Glycerol |
| Natural Oil/Grease + Hydrogen | Green Diesel + nC3 & Naphtha |

Performance Comparison

<table>
<thead>
<tr>
<th></th>
<th>Petrodiesel</th>
<th>Biodiesel</th>
<th>Green Diesel</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>Baseline</td>
<td>+10</td>
<td>Baseline or better</td>
</tr>
<tr>
<td>Cetane</td>
<td>40-55</td>
<td>50-65</td>
<td>75-90</td>
</tr>
<tr>
<td>Cold Flow Properties</td>
<td>Baseline</td>
<td>Needs Additives</td>
<td>Baseline or better</td>
</tr>
<tr>
<td>Oxidative Stability</td>
<td>Baseline</td>
<td>Needs Additives</td>
<td>Baseline or better</td>
</tr>
</tbody>
</table>
UOP Renewable Jet Process

- Initially a DARPA-funded project to develop process technology to produce military jet fuel (JP-8) from renewable sources
- Targets maximum Green Jet production
- Green Jet Fuel can meet all the key properties of petroleum derived aviation fuel, flash point, cold temperature performance, stability
- Certification of Green Jet as a 50% blending component in progress

Built on Ecofining Technology

Natural Oil/Grease → Deoxygenating/Isomerization → Green Diesel

Natural Oil/Grease → Deoxygenating/Selective Cracking/Isomerization → Green Jet

DARPA Project Partners

Southwest Research Institute
Sandia National Laboratories
DARPA
Cargill
UOP
Honeywell